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Fig. 1. Ground-truth model for the Panther dataset, one of the datasets in the presented benchmark for large-scale scene reconstruction.

ABSTRACT
We present a benchmark for image-based 3D reconstruction. The
benchmark sequences were acquired outside the lab, in realistic con-
ditions. Ground-truth data was captured using an industrial laser
scanner. The benchmark includes both outdoor scenes and indoor
environments. High-resolution video sequences are provided as
input, supporting the development of novel pipelines that take ad-
vantage of video input to increase reconstruction fidelity. We report
the performance of many image-based 3D reconstruction pipelines
on the new benchmark. The results point to exciting challenges and
opportunities for future work.
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1 INTRODUCTION
In the past decade, structure from motion (SfM) and multi-view
stereo (MVS) techniques have advanced to enable remarkable re-
constructions of landmark scenes from community photo collec-
tions [Agarwal et al. 2011; Shan et al. 2013; Snavely et al. 2008].
Due to these accomplishments, image-based reconstruction is de-
servedly considered one of the great successes of visual computing,
combining rigorous theory [Hartley and Zisserman 2000; Triggs
et al. 2000], advanced computational methods [Agarwal et al. 2010;
Furukawa and Hernández 2015; Wu et al. 2011], and a culture of
open software development [Fuhrmann et al. 2015; Furukawa 2011;
Moulon et al. 2016; Schönberger 2016; Snavely 2010; Wu 2011].

Nonetheless, existing reconstruction techniques have significant
limitations. Take a nearby camera, walk around a building while
recording a video, and feed the data into a standard SfM+MVS
pipeline. There is a good chance that the result will not be a clean
and accurate reconstruction of the building. For an even greater
challenge, take a video while walking around the interior of your
residence and use that. A clean and complete 3D reconstruction of
the environment is unlikely to emerge.

How can these limitations coexist with the remarkable successes
of image-based reconstruction? Reconstruction from community
photo collections involves dealing with massive and highly redun-
dant datasets. Processing such datasets brings up significant chal-
lenges in system and algorithm design [Agarwal et al. 2011; Frahm
et al. 2010; Heinly et al. 2015; Schönberger and Frahm 2016; Wu
2013]. But it also affords significant freedom in automatically se-
lecting a subset of the input data that can be successfully recon-
structed [Furukawa et al. 2010; Goesele et al. 2007; Li et al. 2008;
Schönberger et al. 2016]. Such data selection enables challenging
input to be discarded and can leave limitations in the underlying
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Fig. 2. Ground-truth model for the Temple dataset. This scene has an area of 713 square meters and a height of 21 meters. The point sets for this and other
datasets were meshed to create the renderings shown in the paper. As a result, the renderings may exhibit meshing artifacts that are not present in the
ground-truth point sets.

techniques unaddressed. Furthermore, the most spectacular results
of these pipelines are not evaluated against precise ground-truth
models, since such models are not available. This can discourage
further improvement in accuracy and completeness, since even if
real improvement is made, it is hard to quantitatively substantiate.
The most commonly used multi-view stereo benchmarks focus

on small tabletop objects imaged in laboratory conditions [Aanæs
et al. 2016; Seitz et al. 2006]. They provide ground-truth poses for
a uniformly distributed set of outside-in views as input, thus re-
stricting attention to one part of the 3D reconstruction pipeline and
eliminating difficulties that cause failure in large-scale real-world
environments. The benchmarks of Strecha et al. [2008] and Merrell
et al. [2007] attempted to address some of these issues, but have a
number of limitations. As a result, they also do not push existing
pipelines beyond their limits.

In order to stimulate progress on some of the standing challenges
in large-scale scene reconstruction, we have created a new bench-
mark. To acquire ground-truth models of large-scale scenes, we used
a state-of-the-art industrial laser scanner with a range of 330 meters
and submillimeter accuracy. The scanner can acquire up to a million
points per second. We have scanned objects and environments from
multiple viewpoints and registered the scans to obtain ground-truth
models. For each model, we provide 8-megapixel video as input for
reconstruction.
The presented benchmark has a number of characteristics that

can support the development of new reconstruction techniques:

• The input modality is video. This can help future pipelines
track the camera, reason about illumination and reflectance,
and reconstruct small details.

• The benchmark evaluates complete reconstruction pipelines.
This leaves scope for tackling camera localization and dense
reconstruction jointly, potentially increasing robustness

and precision via co-adaptation to the performance charac-
teristics of each task.

• The benchmark includes both outdoor and indoor scans of
complete scenes, pushing current reconstruction pipelines
to their limits and beyond.

The presented datasets are organized into two groups: intermedi-
ate and advanced. The intermediate group contains sculptures, large
vehicles, and house-scale buildings with outside-looking-in camera
trajectories. The advanced group contains large indoor scenes im-
aged from within and large outdoor scenes with complex geometric
layouts and camera trajectories.
We have evaluated many SfM+MVS pipelines on the presented

benchmark. The results indicate that image-based 3D reconstruction
is far from solved. Existing pipelines perform impressively given
the difficulties, but the need for significant progress is clear.

2 EXISTING BENCHMARKS
The Middlebury benchmark of Seitz et al. [2006] put multi-view
stereo research on a quantitative footing and was instrumental
in directing efforts in the area. The benchmark is based on two
small objects, 10-20 cm across, with nearly Lambertian surfaces.
Ground-truth models were acquired using a laser stripe scanner.
Input images were acquired by a VGA-resolution camera mounted
on a precisely controlled robotic arm. The objects were imaged in
a lab with controlled lighting. The object is seen from regularly
spaced positions around it. Accurate camera poses for every image
are provided as input. Due to these simplifying factors, methods
evaluated by the authors performed remarkably well even at the
time, consistently achieving submillimeter accuracy.

Aanæs et al. [2016] constructed a larger MVS benchmark using 80
tabletop arrangements. The objects are deliberately more challeng-
ing and have a variety of materials, including specular ones. The
image resolution is also higher: 1600×1200. Other key characteristics
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of the Middlebury benchmark were retained: small tabletop object
arrangements were imaged in the lab, under controlled lighting, by a
camera positioned at regularly spaced viewpoints using a precisely
controlled robotic arm. Ground-truth camera poses are given as
input. In comparison, our work concerns large-scale outdoor and
indoor scenes, imaged in realistic conditions, with high-resolution
video input.

The EPFL benchmark of Strecha et al. [2008] used building fa-
cades and was acquired outside the lab. The input images have
high resolution (6.2 MP). Dense ground-truth models were acquired
by a LiDAR scanner. This benchmark provided a significant chal-
lenge and supported the development and validation of advanced
reconstruction pipelines [Langguth et al. 2016; Schönberger et al.
2016; Tola et al. 2012; Vu et al. 2012]. It is an important precursor to
our work. Nevertheless, it has a limited scope: only three building
facades are included.
The UNC dataset of Merrell et al. [2007] is perhaps closest to

ours in motivation: they focus on large-scale scene reconstruction,
advocate video as the input form, and specifically target realistic
acquisition conditions. (“The data is representative of the kind of
data expected in a real-world application where there are many
uncontrolled variables such as variations in texture, brightness, and
the distance between the camera and the scene.") On the other hand,
this dataset has significant limitations. It contains only a single
scene, a building, and the reference model has limited fidelity. The
referencemodel consists of a small number of planar facets produced
by a surveying procedure, and does not represent the geometric
details of the underlying building.

Our benchmark combines and extends the most compelling char-
acteristics of the EPFL and UNC datasets: video input (UNC), dense
and precise ground-truth (EPFL), and high-resolution input (EPFL).
In fact, our datasets have the highest input resolution, at video rate,
and the most precise ground truth. Crucially, our benchmark is
much larger and more diverse, incorporating complete large-scale
outdoor structures as well as complex indoor environments.
Concurrently with our work, Schöps et al. [2017] created a new

benchmark for two- and multi-view stereo algorithms. Their bench-
mark provides input images at very high resolution (24 MP), as
well as image sequences captured with arrays of synchronized low-
resolution cameras (0.4 MP). While our benchmark evaluates full
scene reconstruction pipelines, theirs focuses on evaluating binocu-
lar stereo and MVS. Thus the two benchmarks are complementary.

When ground-truth geometry is not available, 3D reconstructions
can still be evaluated by measuring the realism of rendered images,
either via perceptual experiments with human observers [Choi et al.
2015; Shan et al. 2013] or by automatically comparing to correspond-
ing real images [Waechter et al. 2017].
There are also benchmarks for related problems, such as mesh

reconstruction from point clouds [Berger et al. 2013], visual odom-
etry [Burri et al. 2016; Geiger et al. 2013], and RGB-D reconstruc-
tion [Choi et al. 2015; Handa et al. 2014; Sturm et al. 2012]. Our work
deals with a different problem: scene reconstruction from images or
video.

3 KEY DECISIONS
Video. One of the distinguishing characteristics of the presented
benchmark is the focus on video as the input modality. This is not
a trivial choice. While a number of projects have considered 3D
reconstruction from video [Frahm et al. 2010; Kolev et al. 2014; New-
combe et al. 2011; Pollefeys et al. 2008; Schöps et al. 2015; Tanskanen
et al. 2013; Vogiatzis and Hernández 2011; Wendel et al. 2012], much
more work in the literature is devoted to reconstruction from im-
age collections. This is in part due to the low resolution and image
quality that characterized digital video cameras in the past. As an
informal but representative datapoint, the camera on the iPhone 4,
released in 2010, captured 5 MP images but only 0.9 MP video. In
general, high-fidelity and high-resolution photographs were more
accessible in the past than digital video with comparable fidelity
and resolution.

This has changed in the last few years. The camera on the iPhone 6s,
released in 2015, captures 8.3 MP video at 30 fps. (For comparison,
the high-resolution EPFL benchmark used 6.2 MP images [Strecha
et al. 2008].) The fidelity of digital video has also increased dra-
matically. On the high end, the Blackmagic Production Camera,
which was one of the cameras acquired for this project, provides
global-shutter 8.6 MP video with 12 stops of dynamic range. Digital
video with high resolution, high framerate, high-quality optics and
sensors, high dynamic range, and minimal rolling-shutter artifacts
is increasingly available.

In fact, since resolution and image fidelity are not the bottlenecks
they once were, video may become the default input modality for
3D reconstruction. This is due to multiple advantages that video
has over image collections:

• Data redundancy can be leveraged to increase reconstruc-
tion fidelity. A complex surface will generally be imaged
more thoroughly and with greater coverage by a continu-
ously capturing video camera.

• Camera localization can benefit from the presence of both
narrow and wide baselines. In particular, video can sup-
port localization in challenging scenes, for example in the
presence of repetitive structures.

• Video can assist the estimation of reflectance properties, by
providing more data about specular highlights and view-
dependent surface appearance.

• Redundant surface sampling can be used for super-resolution,
potentially increasing the accuracy of both geometry and
estimated material properties.

• Video capture has significant usability advantages. The
operator need only turn the camera on and move it through
the environment, without also making decisions about the
timing of individually captured frames. All frames along
the camera trajectory are captured and can be used. The
usability advantage becomes particularly notable in settings
in which it is difficult to explicitly supervise and trigger the
camera during operation because the operator’s attention
is consumed by other tasks, such as piloting the UAV or
steering the vehicle on which the camera is mounted.

• Video is the default imaging modality for an increasing
range of devices, such as UAVs. Cameras for such devices
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Fig. 3. Other models from the intermediate group.

are increasingly selected and manufactured to optimize
video capture, rather than the acquisition of still images.

These advantages coexist with challenges brought up by video, such
as high data volumes and processing demands. We decided to collect
video input to support investigation of the advantages as well as
the challenges. Ultimately, given the high resolution of the video

we provide, the sequences can always be temporally subsampled
and treated as image collections if desired, whereas the opposite
transformation is hardly possible.

Outdoor and indoor. Another key characteristic of the presented
benchmark is that it includes both outdoor and indoor scenes. While
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Fig. 4. Other models from the advanced group.

image-based reconstruction of outdoor environments is considered
fairly well-understood, high-fidelity reconstruction of indoor scenes
from images or video is known to be extremely challenging and is
generally regarded as an open problem. The most prominent results

to date use structure priors [Furukawa et al. 2009; Ikehata et al. 2015;
Xiao and Furukawa 2014] or depth cameras [Choi et al. 2015; Zhou
and Koltun 2013].



6 • A. Knapitsch et al.

Since indoor environments provide the setting for so much of
our lives, we believe that high-fidelity reconstruction of such en-
vironments should be considered a core requirement for modern
pipelines. Indoor environments are not governed by wholly distinct
geometric and physical laws: the same fundamentals apply indoors
and out. We provide multiple comprehensive scans of large-scale
indoor environments. Our goal is to accelerate progress towards
reliable broad-competence systems.

Complete pipeline. Rather than focusing on subproblems, such
as SfM or MVS in isolation, the presented benchmark was created
to evaluate complete 3D reconstruction pipelines: from input video
to dense point cloud. This can support novel approaches that recon-
sider the interface between camera localization and dense recon-
struction. Direct methods have demonstrated that the camera can
be localized and a dense or semi-dense 3D model can be created
without sparse feature matching [Engel et al. 2017, 2014; Newcombe
et al. 2011]. While such methods have not displaced the traditional
SfM+MVS pipelines for high-fidelity scene reconstruction, we want
to support experimentation with novel formulations that tackle the
reconstruction problem as a whole and allow parts of the system to
co-adapt.

High-end camera. Given our motivation to support the develop-
ment of robust scene reconstruction pipelines that can be widely
used, and given the rapid improvement of camera modules for mo-
bile devices, we could have used a smartphone camera to capture
input video for the benchmark. This would have guaranteed that
high reconstruction fidelity on the benchmark immediately trans-
lates to videos that millions of people can capture with devices
already in their possession.
We decided against this because mobile cameras continue to

improve rapidly and we do not want to saddle the benchmark with
optical aberrations that may be largely irrelevant in a few years, or
already are when a dedicated camera is used. Features found in high-
end cameras tend to make their way into lower-end sensors and ISPs.
We thus use a high-end videography setup with fast professional
lenses, high light sensitivity in indoor environments, wide field of
view, and gimbal stabilization.

One consequence of this decision is that the benchmark is back-
ward compatible. Existing SfM+MVS pipelines that were designed
for image collections can be applied to collections of frames from
our videos, because the basic assumptions made by these pipelines
are still applicable. This provides a path for gradual improvement
starting from existing systems.

4 DATA COLLECTION

4.1 Ground truth
Scanning. Ground-truth data was collected using a FARO Focus 3D
X330 HDR scanner. This laser scanner has a range of 330 meters and
can operate both indoors and under direct sunlight. The scanner
has a horizontal range of 360◦ and a vertical range of 300◦. (There
is a “blind cone" with an angular diameter of 60◦ centered at the
vertical ray extending directly downwards from the scanner.) At
the time of calibration (shortly before data acquisition), the ranging

noise of the scanner was 0.1 mm at a distance of 10.2 meters and
0.3 mm at a distance of 22.7 meters.

The scanner can capture up to 976,000 points per second. Lateral
sampling density can be traded off against capture time. An omni-
directional scan (360◦ horizontal, 300◦ vertical) at full resolution
takes two hours and yields a lateral spacing of 0.3 mm at a distance
of 2 meters. We usually operated the scanner at half or quarter res-
olution, which increases lateral spacing proportionately but does
not diminish ranging accuracy. In most scenes, the horizontal range
was restricted to a subset of 360◦ that covered the relevant part
of the scene (e.g., a building or a vehicle). In indoor environments,
full omnidirectional scans were taken since the entire surroundings
were relevant.

In every scene, multiple scans had to be acquired to densely
cover the surfaces. Since the scans have to be registered to each
other, they must overlap. Simple objects such as small statues were
scanned from 4 positions. Mid-sized structures such as the train were
scanned from 8 to 10 positions. The biggest outdoor scenes – Palace
and Temple – were scanned from 14 and 17 positions, respectively.
Data acquisition for the Palace dataset spanned two days. Indoor
environments with complex layouts also required many scans.

Artifacts and outliers. Even with careful scanner operation, out-
liers cannot be avoided in certain settings. Since some of the scenes
are prominent architectural structures and since scanning takes
hours, people inevitably walk through the scene while it is being
scanned. If crowding became too strong, the scan was terminated
and later repeated. But measurements of people rather than the
underlying scene are still sometimes present in the scans. Most such
measurements are removed by the scanner’s built-in noise filtering.
We examined the scans and verified that the remaining outliers
constitute less than one thousandth of all measurements and do not
materially affect the evaluation.
Bodies of water, glass, and mirrors can produce mirror image

artifacts. If the reflective surface is planar, the artifacts are usually
clearly clustered and can be removed manually. If the reflective sur-
face has complex geometry (e.g., polished metal ornaments, glasses,
bottles), the spurious points are harder to remove and are usually
left in. These artifacts are again quantitatively negligible and do not
materially affect the evaluation.

Post-processing. The individual scans are registered using soft-
ware provided by FARO. The software performs global alignment
between all scans and reports point-to-point error in the overlap
regions after alignment. We could thus verify that the inter-scan
alignment error is in line with intra-scan point spacing. After align-
ment, the scene is examined and cleaned of prominent outliers, and
the resulting point cloud is cropped to the area of interest. The point
cloud can be extremely large: e.g., more than 600 million points
for the Palace. The density of the data also varies, due to overlap
between scans and varying distance of the scene’s surfaces from
the scanner. We therefore resample the point cloud using a uniform
voxel grid. The voxel size is set to τ/2, where τ is the distance thresh-
old listed for each scene in Table 1. When multiple points fall into
the same voxel, the mean of these points is retained.

The distance threshold τ cannot be the same for all scenes, since
the scenes vary drastically in scale and sampling density. (The Palace
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is nearly 50 meters tall and scanned from the ground, while the
tanks and the smallest statues are scanned at close range.) We set τ
for each scene by examining the data and computing statistics of
nearest-neighbor distances in the ground-truth point clouds.

4.2 Input video
We have acquired and tested three video cameras. The first has
a global shutter (GS): the Blackmagic Production Camera, used
with a Rokinon 10mm f/2.8 lens. The other two cameras have rolling
shutters (RS): the DJI Zenmuse X5R, used with an Olympus M.Zuiko
12mm f/2.0 lens, and the Sony a7S II, used with a Zeiss Loxia 21mm
f/2.8 lens. All cameras capture 4K (>8 MP) video. The DJI X5R is
stabilized by a DJI Osmo gimbal and the Sony a7S II is stabilized by
a Pilotfly H2 gimbal.
In preparation for data acquisition for the benchmark, we have

tested existing reconstruction pipelines with video sequences from
RS and GS cameras. We found that the gimbal eliminates fast cam-
era motion to the extent that rolling-shutter distortion on videos
captured by the X5R and the Sony a7S II became insignificant. In
particular, we captured corresponding RS and GS sequences for four
different scenes and used these as input. Reference pipelines such
as COLMAP [Schönberger 2016] never performed worse on the RS
sequences than on the corresponding GS sequences. We therefore
concluded that reconstruction error is dominated by factors other
than rolling shutter distortion. Due to the better low-light sensi-
tivity of the RS cameras, we used the gimbal-stabilized X5R and
Sony a7S II to produce video for the benchmark.

In choosing a lens for each camera, we had to consider the bene-
fits and drawbacks of large field of view (FOV). A lens with a large
FOV helps camera tracking, but can have stronger distortion. Many
SfM systems cannot handle the distortion of lenses with FOV above
100◦, since they use a simple camera model with one or two radial
distortion parameters. The 12mm lens we chose for the X5R com-
bines a large FOV (84◦ diagonal) and a lens that conforms to the
simple models used by most systems (as evidenced by reprojection
error during camera calibration). For the Sony a7S II, the 21mm lens
provides a diagonal FOV of 90◦.
For each scene, we captured test videos and reviewed them on

site before capturing sequences for the benchmark, to make sure
that the camera’s settings are appropriate for the scene’s light levels.
The white balance was set manually and fixed for each scene. We
kept exposure time below 10 milliseconds to minimize motion blur.
For most scenes, the lens was focused to the hyperfocal distance.

We kept as many camera settings fixed for each scene as possible.
Some scenes had to be recorded with automatic ISO, aperture, or
shutter speed, due to high dynamic range in the scene. This was the
case for example for outdoor scenes that were filmed on sunny days,
such that some surfaces are under direct sunlight and others are in
the shade. The camera settings used for each scene are reported in
Table 1.

5 SCENES
The benchmark datasets are summarized in Table 1. The ground-
truth point clouds are visualized in Figures 1, 2, 3, and 4. We now
describe each scene in more detail.

Name Cam Area Height τ Frames Points ISO f Shutter
(m2) (m) (mm) (M) (sec.)

Intermediate
Family S 5 2.1 3 4,395 5.5 640 f/3.2 1/160
Francis S 81 15.2 5 7,830 19.3 Auto f/7.1 1600
Horse S 10 3.2 3 6,015 6.2 640 f/3.2 1/160
Lighthouse D 108 11.1 10 8,322 8.2 200 f/4.0 Auto
M60 D 35 3.2 5 5,616 9.7 400 f/2.0 1/100
Panther D 34 2.9 5 6,570 12.3 400 f/2.0 1/100
Playground D 54 2.8 10 7,463 1.7 200 f/2.8 Auto
Train S 35 5.6 5 12,630 21.7 Auto f/5.6 1/1000
Advanced
Auditorium S 541 6.2 10 14,640 53.4 Auto f/2.8 1/125
Ballroom S 254 3.9 10 10,800 43.9 6000 f/3.2 1/160
Courtroom S 206 7.8 10 7,049 43.4 1600 Auto 1/100
Museum S 110 21.2 10 17,115 36.5 Auto f/3.2 1/200
Palace D 4,295 47.2 30 21,871 41.9 Auto f/3.2 Auto
Temple S 713 20.7 15 17,475 33.4 Auto f/5.6 1/640

Table 1. Benchmark datasets. From left to right: Camera model,
Sony a7S II (S) or DJI X5R (D); footprint area of the cropped ground-truth
point set; height of the cropped ground-truth point set; the threshold τ
used for precision and recall computation; number of frames in the input
video; number of points in the ground-truth point set after cropping and
subsampling (millions). The last three columns summarize the exposure
settings used for video capture: ISO, f-number, and shutter speed.

5.1 Intermediate datasets
Family. The statue was filmed right after sunset, which allowed us
to fix all exposure settings. The illumination is almost uniform from
all directions.

Francis. This is the biggest sculpture in the benchmark, extending
to a height of 15 meters. Due the sculpture’s height, the camera
must frequently look up; in those frames, the only background is
the sky. Much of the sculpture is also symmetric. These factors can
complicate camera localization. In some frames, the sun is directly
behind the sculpture.

Horse. This bronze statue is highly specular and rests on a platform
with a uniform specular surface. It was imaged right after sunset.
This dataset is particularly challenging due to the uniform specular
materials.

Lighthouse. The Lighthouse is one of the tallest structures in the
intermediate group. It is imaged with only the sky in the background
for parts of the sequence. On the other hand, it has detailed tex-
ture due to weathering on the bricks, which can help tracking and
reconstruction.

M60. The M60A1 Patton battle tank was manufactured in the 1970s
and was deployed in the first Gulf War. It is located inside a hangar
with one side open. Additional light was switched on inside the
hangar to assist video capture. The tank’s surface is nearly Lamber-
tian and is richly textured due to age. All exposure settings were
fixed.

Panther. The Panther Mark V tank was left behind in a swamp
in Poland during WWII, then salvaged and refurbished after more
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than 40 years using mostly original parts and materials. The sur-
face is covered with Zimmerit coating, which adds high-frequency
geometric detail.

Playground. This scene was imaged on an overcast day under fairly
uniform illumination. The main difficulty is due to thin structures
such as bars, poles, chains, and wooden beams. The reflective surface
of the slide is an additional challenge.

Train. The train was imaged on a sunny day. The ISO was set to
automatic to cope with varying illumination. Both foreground and
background are sharp due to the small aperture.

5.2 Advanced datasets
The datasets in this group are challenging due to their scale, com-
plexity, and other complicating factors. The four indoor scenes are
in this group. The indoor datasets present a number of difficulties:
illumination is considerably weaker, the camera may take in only a
small part of the environment at a given time, and many surfaces are
nearly uniform in appearance. The outdoor scenes in this group are
challenging primarily due to their scale and complexity. All datasets
were recorded with the best camera settings afforded by the scene,
with the requirements of SfM and MVS techniques in mind.

Auditorium. This large auditorium was filmed with automatic ISO
due to high dynamic range within the scene. Parts of the scene
are strongly illuminated by spotlights while other parts receive
only weak indirect illumination. This scene is challenging due to
uniform regions, repeating structures, sharply varying illumination,
and glare.

Ballroom. The ballroom has elaborate wooden paneling and a tex-
tured carpet. The room is populated by scattered tables and chairs.
The dark interior and weak illumination necessitated a very high
ISO setting. This is the only indoor scene filmed with fixed camera
exposure settings.

Courtroom. This courtroom was built in 1910. A stained glass
dome admits natural light. The scene is filled with regularly ar-
ranged wooden furniture. A patterned carpet and ornamentation
add texture and structural detail.

Museum. This atrium is 21 meters high and was imaged from two
stories. The stained glass dome admits a lot of natural light. The
scene is additionally illuminated by artificial light sources. The
aspect ratio is unusual: the scene is much higher than it is wide.

Palace. The Palace of Fine Arts in San Francisco is our largest scene
in terms of both area and height. For this scene, we provide multiple
video sequences concatenated together, rather than one continuous
shot. This was necessary due to the layout of the physical environ-
ment, which necessitated imaging from several distributed locations.
This scene was imaged with aperture priority and automatic shutter
speed and ISO. This was necessary due to strongly varying illumi-
nation conditions in the scene, which contains areas under direct
sunlight as well as shaded areas inside the dome. The main structure
is highly symmetrical and contains many repeating patterns. The
large body of water in front of the palace is an additional source of
difficulty.

Temple. The Temple of Music in San Francisco was captured with
automatic ISO settings on a slightly overcast day. The illumination
varies strongly between directly illuminated and shaded areas. The
Temple is large, but not as complex as the Palace.

5.3 Training datasets
We have collected additional datasets that can be used for train-
ing. The ground-truth models for these datasets will be made pub-
lic. The datasets can be obtained from the benchmark’s web site,
www.tanksandtemples.org.

6 EVALUATION PROCEDURE
Since the evaluated reconstruction pipelines operate on image col-
lections rather than video, we sampled a set of frames from each
benchmark sequence and used these sets of frames to evaluate ex-
isting pipelines. For the reported evaluation, we sampled the video
at regular intervals. We sampled 150 frames for Family and Horse,
500 for Palace, and 300 for all other scenes.

Alignment. For benchmarking, the point clouds produced by the
evaluated pipelines must be aligned to the ground-truth models.
Most pipelines expose the reconstructed camera poses, and for these
we perform the alignment automatically. The reconstructed cam-
era poses are registered to estimated ground-truth camera poses,
yielding scale and pose estimates for the reconstructed point cloud.
We estimate the ground-truth camera poses using the ground-truth
point cloud [Mastin et al. 2009]. Alternatively, for pipelines that do
not expose the camera poses (e.g., Pix4D), we manually align the
reconstructed point cloud to the ground truth.

The approximate alignment described in the previous paragraph
is used to initialize Sim(3) refinement of the reconstruction to the
ground-truth model. The approximate alignment provides a set of
rough correspondences {(pmi , q

m
i )}. A refined pose and scale are

estimated by optimizing the following objective:

E (T) =
∑
i
∥pmi − Tq

m
i ∥

2. (1)

Here the points are represented in homogeneous coordinates and
Tm ∈ R4×4 is a similarity transformation:

Tm =
[
cR t
0 1

]
. (2)

The least-squares estimate is obtained using Umeyama’s algorithm
[Umeyama 1991]. Starting from this scaling and alignment Tm , we
use an extension of ICP to similarity transformations (including
scale) to refine the registration of the dense point clouds.

Resampling. The aligned reconstruction is resampled using the
same voxel grid as the ground-truth point cloud. We again use voxel
size τ/2. When multiple points fall into the same voxel, the mean of
these points is retained.

Cropping. Each ground-truth model is accompanied by a bounding
volume, defined by a polygonal prism. The base polygon can have
arbitrary complexity and was manually specified in an interactive
interface. The bounding volume specifies the region in which recon-
structions are evaluated against the ground-truth. The reconstructed
point cloud is cropped to the interior of this bounding volume.

http://www.tanksandtemples.org
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Measures. Let G be the ground truth and R a reconstructed point
set being evaluated. For a reconstructed point r ∈ R, its distance to
the ground truth is defined as

er→G = min
g∈G

r − g . (3)

These distances can be aggregated to define the precision of the
reconstruction R for any distance threshold d :

P (d ) =
100
|R |

∑
r∈R

[
er→G < d

]
, (4)

where [·] is the Iverson bracket. P (d ) is defined to lie in the range
[0,100] for convenience and can be interpreted as a percentage.
Similarly, for a ground-truth point g ∈ G, its distance to the

reconstruction is defined as

eg→R = min
r∈R

g − r . (5)

The recall of the reconstruction R for a distance threshold d is
defined as

R (d ) =
100
|G|

∑
g∈G

[
eg→R < d

]
. (6)

Precision and recall can be combined in a summary measure, the
F-score:

F (d ) =
2P (d )R (d )
P (d ) + R (d )

. (7)

The F-score at a given threshold d is the harmonic mean of precision
and recall at this threshold. It has the property that if either P (d ) → 0
or R (d ) → 0, then F (d ) → 0. It is thus a better summary measure
than the arithmetic mean, which does not have this property.

The precision quantifies the accuracy of the reconstruction: how
closely the reconstructed points lie to the ground truth. The recall
quantifies the reconstruction’s completeness: to what extent all the
ground-truth points are covered. Precision alone can be maximized
by producing a very sparse set of precisely localized landmarks.
Recall alone can be maximized by densely covering the space with
points. However, either of these schemes will drive the other mea-
sure and the F-score to 0. A high F-score for a stringent distance
threshold can only be achieved by a reconstruction that is both
accurate and complete.
We will use F (τ ) as the default measure for the benchmark. We

will also report additional measures to facilitate fine-grained analy-
sis of the performance characteristics of each technique. In particu-
lar, we will report P (d ) and R (d ) alongside F (d ), across a range of
distance thresholds d .

Evaluation server and leaderboard. To support progress in the
field, we will set up a public evaluation server and leaderboard.
Researchers will be able to submit reconstructions of benchmark
sequences, which will be evaluated according to multiple measures,
with F (τ ) being the main measure for the leaderboard. Ground
truth data for the benchmark sequences will be withheld to en-
sure that the reported measures reflect genuine performance char-
acteristics of the underlying techniques. The evaluation server
and leaderboard can be accessed via the benchmark’s web site,
www.tanksandtemples.org.

7 EVALUATED METHODS
This section describes reconstruction pipelines we have evaluated.
While our benchmark is set up to evaluate complete pipelines (from
video to dense point clouds), many state-of-the-art techniques focus
on SfM or MVS specifically. Therefore, we have assembled many
pipelines for evaluation by putting together compatible SfM and
MVS methods. Sections 7.1 and 7.2 describe the specific SfM and
MVS methods we have tested. Section 7.3 describes commercial
software that was tested alongside open-source implementations.
Section 7.4 lists all the pipelines we have evaluated. In each subsec-
tion, the methods are listed in alphabetical order.

7.1 Structure from motion
Bundler. Bundler [Snavely 2010; Snavely et al. 2008] is a seminal
SfM implementation designed for large-scale community photo
collections. It is the oldest SfM implementation we have tested
and has inspired many related efforts in the community. To process
large image collections, Bundler adds images incrementally. Starting
from an image pair that has the largest number of matched feature
points, Bundler triangulates matched points and adds a new image
that best aligns with previously triangulated points. During the
process, bundle adjustment is used to refine the camera poses and
landmark positions by minimizing reprojection error. This general
approach is known as incremental SfM and is followed in many
other implementations.

COLMAP. COLMAP [Schönberger 2016] is a general-purpose SfM
and MVS pipeline that is based on recently presented ideas [Schön-
berger and Frahm 2016; Schönberger et al. 2016]. COLMAP follows
the incremental SfM approach used in Bundler but integrates addi-
tional verification, outlier filtering, and model selection techniques
that increase the robustness of each stage in the pipeline [Schön-
berger and Frahm 2016].

MVE. MVE is a complete reconstruction pipeline that integrates
SfM, MVS, and surface meshing [Fuhrmann et al. 2015]. The SfM im-
plementation is structurally akin to Bundler and integrates multiple
variations on each step of the pipeline.

OpenMVG. OpenMVG is a comprehensive and actively maintained
open-source multi-view geometry library [Moulon et al. 2016]. We
use the incremental SfM configuration for most experiments with
OpenMVG, but also test the global SfM configuration (OpenMVG-G).

Theia. Theia [Sweeney 2016] is an open-source SfM library that
provides recent implementations of both incremental and global
SfM pipelines, informed by recent research. We have tested both
configurations: global (Theia-G) and incremental (Theia-I).

VisualSFM. VisualSFM [Wu 2011] is a highly optimized incremen-
tal SfM pipeline that integrates ideas from multiple projects [Wu
2013; Wu et al. 2011].

7.2 Multi-view stereo
CMPMVS. CMPMVS is an implementation of the technique of
Jancosek and Pajdla [2011]. It is one of the referenceMVS techniques
due to its handling of weakly textured surfaces.

http://www.tanksandtemples.org
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COLMAP. This is an implementation of the recent work of Schön-
berger et al. [2016] and is part of the COLMAP library [Schönberger
2016].

MVE. This MVS implementation is based on the work of Goesele
et al. [2007] and is part of the MVE library [Fuhrmann et al. 2015].

OpenMVS. OpenMVS is an actively maintained open-source MVS
library that provides a set of algorithms for producing dense point
clouds from localized cameras and landmarks. It can be viewed as
a counterpart to OpenMVG but is interoperable with many SfM
implementations.

PMVS. Patch-based multi-view stereo (PMVS) [Furukawa 2011] is
a seminal MVS pipeline that was used in numerous projects and in-
spired subsequent MVS techniques. The implementation integrates
ideas described in two papers [Furukawa et al. 2010; Furukawa and
Ponce 2010]. We use the recommended combination of CMVS and
PMVS2.

SMVS. Shading-aware multi-view stereo (SMVS) [Langguth et al.
2016] is a recently presented MVS technique that reasons about
surface reflectance in order to increase the accuracy and complete-
ness of dense reconstruction. In its default mode, it is not using
shading-based optimization. This is the mode that was used for the
evaluation.

7.3 Commercial software
We have also evaluated a commercial solution that provides a com-
plete pipeline that admits a collection of images as input and pro-
duces a dense reconstruction as output.

Pix4D. Pix4D is a spinoff from the lab that created the influential
EPFL benchmark [Strecha et al. 2008]. The company provides mul-
tiple products that support image-based reconstruction. We used
the 2016 Pix4Dmapper Pro version for the evaluation.

7.4 Pipelines
We used SfM and MVS implementations described in the preceding
sections to assemble 15 reconstruction pipelines for evaluation.

First, COLMAP, MVE, and Pix4D are already configured as com-
plete pipelines, integrating the respective SfM and MVS methods.
We evaluate these complete pipelines.

Beyond this, we evaluate many combinations of SfM and MVS
methods that provide compatible interfaces:

• Bundler + PMVS
• MVE (SfM) + SMVS
• OpenMVG + MVE (MVS)
• OpenMVG + OpenMVS
• OpenMVG-G + OpenMVS
• OpenMVG + PMVS
• OpenMVG + SMVS
• Theia-G + OpenMVS
• Theia-I + OpenMVS
• VisualSfM + CMPMVS
• VisualSfM + OpenMVS
• VisualSfM + PMVS

For each pipeline, we used the settings recommended in the respec-
tive documentation.

8 RESULTS
Table 2 summarizes the performance of each of the 15 evaluated
pipelines on each of the benchmark scenes. For each pipeline and
each dataset, the table reports the F-score for the reconstruction
produced by the pipeline on this dataset, using the default distance
threshold τ . For each pipeline, the table also reports its mean F-score
over datasets from the intermediate and advanced groups, respec-
tively, as well as the average rank of each pipeline on each group. The
average rank is defined as the average of the ranks of the pipeline
over the whole group. (E.g., if a pipeline yields the highest F-score
on half of the scenes and the fourth-highest on the other half, its
average rank is 2.5.) The rank is a more robust summary statistic
than the mean and should be regarded as the primary measure of
the relative performance of a given pipeline. The mean provides an
indication of the absolute performance.

COLMAP [Schönberger 2016; Schönberger and Frahm 2016; Schön-
berger et al. 2016] achieves the lowest rank on both the intermediate
and the advanced groups. It yields the top F-score on four of the
intermediate datasets and four of the advanced ones. On the inter-
mediate group, Pix4D and OpenMVG+OpenMVS achieve similar
aggregate performance to COLMAP, with Pix4D achieving the high-
est F-score on three of the datasets and obtaining the highest mean
F-score across the group. Overall, Family appears to be the easiest
intermediate dataset for existing pipelines and Horse the hardest.
We attribute this to the uniform specular materials of the Horse
statue and its pedestal.
On the advanced group, Pix4D achieves the second lowest rank

after COLMAP, followed by OpenMVG+OpenMVS. In this group,
Museum appears to be the easiest dataset. Auditorium and Palace
are very challenging.

We are primarily interested not in the relative performance of the
different pipelines, but in the best performance across all pipelines
on each dataset. The best performance of existing techniques on a
dataset indicates how much room for progress remains. Figure 5
shows the reconstructions obtained by the best-performing pipelines
on a number of datasets. For each pipeline, the figure shows the
color-coded reconstruction, with colors indicating per-point dis-
tance to the ground-truth model, as well as the color-coded ground-
truth, with colors indicating per-point distance to the reconstruction.
Additional visualizations are provided in the supplement.

Evaluating individual components. Our benchmark evaluates
complete reconstruction pipelines. Individual components, such as
specific SfM or MVS systems, can still be evaluated by fixing the
other components. In our results, OpenMVG is used as an SfM front-
end for four different MVS systems. These MVS systems can be com-
pared to each other in this way. Likewise, five SfM systems are used
with OpenMVS, which allows a comparison of these SfM systems.
For example, comparing “OpenMVG + OpenMVS” to “OpenMVG-G
+ OpenMVS” and “Theia-I + OpenMVS” to “Theia-G + OpenMVS”
reveals that incremental SfM systems outperform global SfM.

Analysis. A major factor in the performance of reconstruction
pipelines is the robustness of the SfM system. SfM systems often
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Family 16.91 50.41 48.59 30.42 49.91 58.86 56.50 41.03 31.93 64.45 47.95 48.11 35.41 49.10 38.02
Francis 4.34 22.25 23.84 16.64 28.19 32.59 29.63 17.70 19.92 31.91 19.52 19.38 14.11 21.38 12.93
Horse 3.82 25.63 12.70 10.44 20.75 26.25 21.69 12.83 15.02 26.43 19.56 20.66 14.71 18.59 11.30
Lighthouse 22.49 56.43 5.07 39.16 43.35 43.12 6.55 36.68 39.38 54.41 28.90 30.02 37.75 25.24 41.75
M60 23.80 44.83 39.62 34.35 44.51 44.73 39.54 35.93 36.51 50.58 16.25 30.37 12.02 27.02 35.47
Panther 21.54 46.97 38.16 37.90 44.76 46.85 28.48 33.20 41.61 35.37 21.54 30.79 24.29 24.64 34.19
Playground 0.53 48.53 5.81 2.40 36.58 45.97 0.00 31.78 35.89 47.78 23.45 23.65 27.26 16.59 35.47
Train 9.42 42.04 29.19 21.44 35.95 35.27 0.53 28.10 25.12 34.96 10.24 20.46 13.62 13.07 13.26

Mean 12.86 42.14 25.37 24.09 38.00 41.71 22.86 29.66 30.67 43.24 23.43 27.93 22.40 24.45 27.80
Rank 14.25 2.38 8.25 10.50 3.75 2.50 8.88 8.88 7.38 2.50 10.88 9.12 11.12 10.00 9.62

A
dv

an
ce
d

Auditorium 0.00 16.02 4.11 0.97 14.70 9.79 1.89 4.54 6.96 10.83 5.74 6.23 4.70 7.94 4.68
Ballroom 4.05 25.23 12.63 6.76 26.36 22.49 9.16 12.09 11.58 18.53 13.63 13.73 8.07 15.21 10.84
Courtroom 10.30 34.70 27.93 16.97 32.48 26.54 24.61 21.00 19.82 33.21 16.08 18.43 13.17 21.21 16.36
Museum 11.15 41.51 34.67 19.72 37.57 36.89 26.18 29.17 21.89 47.37 15.51 18.55 8.66 19.78 20.00
Palace 2.71 18.05 13.58 7.74 3.65 14.64 4.02 6.76 8.90 14.47 6.43 10.61 3.89 9.10 7.32
Temple 5.45 27.94 16.79 7.98 22.84 20.76 14.14 12.72 12.27 26.01 11.77 11.58 6.95 2.99 2.12

Mean 5.61 27.24 18.28 10.02 22.93 21.85 13.33 14.38 13.57 25.07 11.53 13.19 7.57 12.70 10.22
Rank 14.50 1.33 6.33 11.50 4.33 3.67 9.33 8.50 8.00 2.50 10.17 8.33 12.67 7.83 11.00

Table 2. F-score for each method on each benchmark dataset. Mean F-score and average rank are also listed, summarizing performance on the intermediate
and advanced groups.

produce disconnected clusters that are not properly integrated to
make up a complete model of the scene. Big differences in the rank-
ing among current pipelines often come from failures on the part
of the SfM system to integrate a whole scene together properly.
Interestingly, all of the tested SfM systems produce camera poses
for at least 80% of the input images. However, the quality of these
camera poses varies drastically. In addition to producing discon-
nected clusters, some SfM systems produce clearly inaccurate poses
that do not make up a plausible camera path.
Characteristics of the MVS system are also important. Systems

that incorporate meshing remove outliers but sparsify flat regions.
The performance of these methods on our benchmark can be im-
proved by meshing at uniform density. On the other hand, systems
that do not mesh or filter outliers by other means produce noisy
point sets that have limited precision.

Robustness to varying exposure, specular materials, and uniform
surfaces are also important. On datasets with varying exposure
settings, MVS methods with more restrictive modeling assumptions

are less robust. All MVSmethods are challenged by uniform surfaces
and strongly non-Lambertian materials.

9 CONCLUSION
We have presented a new benchmark for evaluating image-based re-
construction techniques. The presented benchmark has a number of
characteristics that can support the development of new approaches
to 3D reconstruction. Video sequences are provided as input, encour-
aging new ideas that take advantage of temporally dense sampling
to increase reconstruction fidelity. Complete pipelines are evalu-
ated, aiming to support systems that tackle camera localization and
dense reconstruction jointly. Both outdoor and indoor scenes are
included, with the goal of stimulating the development of robust
broad-competence systems. We will set up an evaluation server
and online leaderboard that can be used by the community to track
progress. The datasets, evaluation server, and leaderboard can be
accessed via the benchmark’s web site, www.tanksandtemples.org.

http://www.tanksandtemples.org
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Fig. 5. State-of-the-art results on a number of benchmark datasets. (a) A frame from the input video sequence. (b) Reconstruction produced by the best-
performing pipeline, with distance to the ground-truth model coded by color. (c) The ground-truth model, with per-point distance to the reconstruction coded
by color.
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